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The extinction problem for three-dimensional inward solidification
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Abstract. The one-phase Stefan problem for the inward solidification of a three-dimensional body of liquid that
is initially at its fusion temperature is considered. In particular, the shape and speed of the solid-melt interface
is described at times just before complete freezing takes place, as is the temperature field in the vicinity of the
extinction point. This is accomplished for general Stefan numbers by employing the Baiocchi transform. Other
previous results for this problem are confirmed, for example the asymptotic analysis reveals the interface ulti-
mately approaches an ellipsoid in shape, and furthermore, the accuracy of these results is improved. The results
are arbitrary up to constants of integration that depend physically on both the Stefan number and the shape of
the fixed boundary of the liquid region. In general it is not possible to determine this dependence analytically;
however, the limiting case of large Stefan number provides an exception. For this limit a rather complete asymp-
totic picture is presented, and a recipe for the time it takes for complete freezing to occur is derived. The results
presented here for fully three-dimensional domains complement and extend those given by McCue et al. [Proc. R.
Soc. London A 459 (2003) 977], which are for two dimensions only, and for which a significantly different time
dependence occurs.
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1. Introduction

This paper is concerned with the inward solidification of a region of liquid which is initially
at its fusion temperature. On assuming the physical properties of the liquid remain constant
throughout the freezing process, and that heat flows through conduction only, we formulate a
classical one-phase Stefan problem for the temperature in the a priori unknown solid phase.
The interface between the solid and liquid phases is a moving boundary and, provided the
initial liquid geometry satisfies some restrictions, the liquid phase contracts continuously to
a point, which we refer to as the extinction point, in a finite time, which we refer to as
the extinction time. The only parameter involved (apart from those which describe the initial
geometry of the liquid region) is the Stefan number, which is a ratio of latent to sensible heat.

Inward solidification problems are well known to be difficult to treat analytically; as well
as displaying the inherent complexities of a moving-boundary problem, they exhibit an intri-
cate structure in the neighbourhood of the extinction point at times just before complete
freezing. Accordingly, much interest has been devoted to numerical studies of inward solid-
ification problems, such as those of Allen and Severn [1], Lazaridis [2], Crank and Gupta [3]
and Crowley [4]. There has also been considerable progress made by the use of asymptotic
methods, and this is the approach adopted in the present study. We therefore restrict ourselves
to discussions on this topic.

For the case where the fixed boundary is spherical (or circular), one can develop pertur-
bation solutions for the inward solidification problem in the limit of large Stefan number
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(see Pedroso and Domoto [5] and Riley et al. [6]). Under this assumption, the leading-
order problem becomes quasi-steady, as the solid-liquid interface moves very slowly, and
the time derivative of the temperature can be ignored. Such solutions, however, are sin-
gular at times close to extinction. Riley et al. [6] use the method of matched asymptotic
expansions to deal with this singularity by considering a second time-scale in which it is
no longer appropriate to neglect the time derivative. It happens that this solution in turn
becomes singular, and further analysis in a third, exponentially short time-scale has been
undertaken by both Stewartson and Waechter [7] and Soward [8] to complete the asymptotic
description.

The question naturally arises as to what happens if the geometry lacks radial symme-
try. In two dimensions, analyses of this problem were presented in Andreucci et al. [9] and
McCue et al. [10]. Here, the solid-melt interface becomes elliptic in shape as the extinction
time is approached, regardless of the initial geometry and the Stefan number. For the spe-
cial limiting case of large Stefan number, McCue et al. [10] were able to give a rather com-
plete asymptotic analysis of the problem by matching back onto earlier time-scales. They
determined how the aspect ratio of the shrinking ellipse depends on the Stefan number and
the initial geometry, and also were able to formulate recipes for the extinction time and
the location of the extinction point. A related problem is the contraction of bubbles in
Hele-Shaw cells, which has been studied by Entov and Etingof [11] and McCue et al. [12].
Here the bubble also becomes elliptic in shape just before extinction, regardless of the initial
domain.

The present study is concerned with the more physically relevant situation in which the
geometry is truly three-dimensional. That is, we extend the large-Stefan-number analyses of
Stewartson and Waechter [7] and Soward [8] for the radially symmetric case to allow the
initial region of liquid to have a general three-dimensional shape. All results presented here
are analogous to those given in McCue et al. [10] (for example, in three dimensions we have
shrinking ellipsoids), and the studies complement each other. We note that in three dimen-
sions, the leading-order equations on the first time-scale are the same as those that describe
contracting bubbles in porous media. This problem was analysed in McCue et al. [12], and
we draw upon many of the results presented there.

It should be noted that the analysis presented for the third time-scale in [8] (where the
solidification of a sphere was studied) is a generic extinction analysis, in the sense that it is in
fact applicable for all values of the Stefan number. Such generic extinction behaviour was sub-
sequently considered by Herrero and Velázquez [13], and this work was generalised to include
fully three-dimensional domains by Andreucci et al. [9], who show that the vanishing region
of liquid is ellipsoidal in shape. They also derive the rate at which the liquid region van-
ishes. We also present a generic extinction analysis, as it is needed to complete the asymp-
totic picture in the case of large Stefan number. In doing so, we are able to derive results
not presented in Andreucci et al. [9] and to improve upon the accuracy of the asymptotic
description for the rate at which the liquid region disappears. In fact, the asymptotic results
given here are derived to as many orders as those of Soward [8] for the radially symmetric
case.

The format of the paper is as follows. In the following section we derive the govern-
ing equations for our inward-solidification problem, and then reformulate them in terms
of a Baiocchi transform. In Section 3, we summarise the generic extinction analysis,
and improve on the results of Andreucci et al. [9]. The analysis for large Stefan num-
ber is presented in Section 4, and the paper is closed in Section 5 with a
discussion.
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2. Heat-conduction equations

We consider the solidification of a (convex) region of liquid that is initially at its fusion tem-
perature u∗

F. The process begins at t=0 by fixing the temperature at the boundary of the liq-
uid to be u∗

W <u∗
F. The result is that the liquid solidifies from the boundary inwards as the

interface between the solid and the liquid regions propagates away from the fixed boundary
into the fluid.

It is assumed that heat is transferred by conduction alone, and that the thermal diffusivity
κ and the specific heat at constant pressure cp are constant. Furthermore, it is supposed the
density takes the same value in both the liquid and solid phases. We scale all lengths with
respect to some representative length scale l, temporal scales with respect to l2/κ, and we
measure temperature relative to u∗

F in units of u∗
F −u∗

W. It follows that the governing equa-
tions in nondimensional variables are the heat equation

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
(1)

throughout the solid region, subject to the boundary conditions

u=−1 on ∂B, (2)

u=0, β=∇u ·∇ω on t=ω(x, y, z). (3)

Here the initial region of liquid is denoted by B, and its boundary by ∂B. The free boundary
between the liquid and solid phases is denoted by t=ω(x, y, z). The one dimensionless group
associated with the problem is the Stefan number β, which is defined by

β= L

cp(u
∗
F −u∗

W)
,

where L is the latent heat of fusion per unit mass of the fluid.
For the analysis presented in this paper, it is assumed that the free boundary t=ω(x, y, z)

contracts continuously from ∂B at t=0 to some point, (xf , yf , zf ) say, at some finite time, tf
say. We refer to (xf , yf , zf ) and tf as being the extinction point and extinction time, respec-
tively. (In reality, for a non-concave boundary ∂B, it may be the case that there is more than
one extinction point; we discuss this topic briefly in Section 5.) It will prove useful to intro-
duce the temporal variable τ , defined by τ = tf − t , so that the limit in which extinction occurs
is both t → t−f and τ → 0+. The goal is therefore to acquire information on the extinction
time tf , the location of the extinction point (xf , yf , zf ), the temperature field as t→ t−f , and
the shape and speed of the free boundary t =ω(x, y, z) as t→ t−f . Furthermore, we wish to
determine, where possible, how all these quantities depend on both the Stefan number β and
the initial geometry B.

To achieve this end we reformulate the governing equations (1–3) with the use of the
Baiocchi transform

w(x, y, z, t)=−
∫ t

ω(x,y,z)

u(x, y, z, t ′)dt ′.

The governing equations are now

∂w

∂t
= ∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2
−β (4)

with the boundary conditions
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w= ∂w

∂n
=0 on t=ω(x, y, z), (5)

w= t on ∂B. (6)

Given a solutionw, the temperature u can be recovered via either u=−∂w/∂t or u=−∇2w+β.

3. Generic extinction analysis

3.1. Introduction

This section is dedicated to the asymptotic solution to (4–6) in the limit t→ t−f for arbitrary
Stefan number β. Results equivalent to those of this section have previously been derived by
Andreucci et al. [9]. However, we include this analysis here for a number of reasons. By sacri-
ficing rigour, we believe the current approach to gain in transparency. In addition, the analysis
is required to describe the third and final (exponentially short) time-scale for the case in which
the Stefan number β� 1. By matching back onto the second time-scale described later, we
shall be able to complete the determination of the dependence of the aspect ratio of the evolv-
ing free boundary just before extinction on both the Stefan number β and the initial geometry
B. We require this analysis to determine the final temperature distribution near the extinc-
tion point and the rate at which the free boundary contracts, the former becoming singular
on the second time-scale. With these quantities determined, it becomes clear when and where
the description for the second time-scale becomes invalid. Finally, we are able to derive results
for the moving boundary and the final temperature distribution to a higher order than those
presented by Andreucci et al. [9].

At this stage it is convenient to assume that the extinction point is located at the origin.
In fact, for the generic extinction analysis we are unable to extract any information regarding
the location of the extinction point. It will, however, prove possible in the limit β�1; discus-
sions on this topic are deferred until Section 4. For analysis in the limit x, y, z, τ→0, we use
the similarity variables

ξ = x

τ 1/2
, η= y

τ 1/2
, ζ = z

τ 1/2
, ρ= r

τ 1/2
, (7)

T =− log τ, w(x, y, z, τ )= τβ W(ξ, η, ζ, T ), (8)

so that (4) and (5) become

∂2W

∂ξ2
+ ∂2W

∂η2
+ ∂2W

∂ζ 2
− 1

2

(
ξ
∂W

∂ξ
+η∂W

∂η
+ ζ ∂W

∂ζ

)
+W = ∂W

∂T
+1, (9)

W = ∂W

∂ν
=0 on the free boundary, (10)

where ∂/∂ν denotes the derivative in the normal direction. The generic analysis involves three
spatial regions, inner, intermediate and outer.

3.2. Inner region, ρ= (ξ2 +η2 + ζ 2)
1
2 =O(σ)

We introduce the quantity σ(T ), which measures the distance between the boundary of the
shrinking liquid core and the origin. To be precise, we define σ by forcing the volume
enclosed by the free boundary to be 4πτ 3/2σ 3/3.
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The inner region has ρ=O(σ), where σ � 1. The function σ(T ) is to be determined by
the solution process. We introduce the variables

ξ̂ = ξ

σ
, η̂= η

σ
, ζ̂ = ζ

σ
, ρ̂= ρ

σ
,

and write

W ∼σ 20(ξ̂ , η̂, ζ̂ )+O(σ 4) as T →∞, (11)

so that to leading order (9–10) give

∂20

∂ξ̂2
+ ∂20

∂η̂2
+ ∂20

∂ζ̂ 2
=1, 0 = ∂0

∂ν̂
=0 on the free boundary. (12)

In order to match with the intermediate region described below, the far-field condition must
be of the form

0 ∼ āξ̂2 + b̄η̂2 + ( 1
2 − ā− b̄)ζ̂ 2 − δ+ 1

3ρ̂
+O(ρ̂−3) (13)

as ρ̂→∞. In general, Equation (13) will contain a linear combination of the quadratic terms
ξ̂ η̂, ξ̂ ζ̂ and η̂ζ̂ ; however, we may orient the coordinate axes so that these terms vanish. In
(13), ā, b̄>0 are important free constants which, without loss of generality, we restrict to sat-
isfy ā+ b̄< 1

2 , 1
4 (1−2ā)≤ b̄≤ ā. For β�1 we shall determine ā and b̄ by matching back onto

earlier time-scales; however, for general β this is not possible. The constant δ in (13) is found
as a function of ā and b̄ as part of the solution to (12–13), by a process which we describe
below. Finally, we mention the constant 1/3 in front of the term 1/ρ in (13) is required for
the volume enclosed by the free boundary to be consistent with our definition of σ . This may
be shown by applying the divergence theorem to (12a) in an infinitely large volume excluding
the region enclosed by the free boundary.

A short discussion on the boundary-value problem (12–13) is given in Appendix A. For
our purposes it is sufficient to know that for the strict inequality 1

4 (1−2ā)< b̄< ā, the solu-
tion for the constant δ is

δ=F(ϕ̄0, q̄/p̄)/2p̄, (14)

where ϕ̄0 = arcsin(p̄/λ̄0) and λ̄0, p̄ and q̄ are constants given implicitly in terms of ā and b̄

by the relations

ā= λ̄2
0 − q̄2

2(p̄2 − q̄2)
− E(ϕ̄0, q̄/p̄)

2p̄(p̄2 − q̄2)
, b̄=− λ̄2

0 − p̄2

2(p̄2 − q̄2)
− F(ϕ̄0, q̄/p̄)

2p̄q̄2
+ p̄E(ϕ̄0, q̄/p̄)

2q̄2(p̄2 − q̄2)
, (15)

λ̄0

√
(λ̄2

0 − p̄2)(λ̄2
0 − q̄2)=1. (16)

Here F(ϕ, k) and E(ϕ, k) are elliptic integrals defined by (A.7). The free boundary is ellipsoi-
dal in shape, and is given in original variables by

x2

λ̄2
0 − p̄2

+ y2

λ̄2
0 − q̄2

+ z2

λ̄2
0

= τσ 2.

If 1
4 (1 − 2ā)= b̄ < ā or 1

4 (1 − 2ā) < b̄= ā, then the free boundary is the shape of an oblate
spheroid or a prolate spheroid, respectively. In these cases we may derive a result for δ by
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taking appropriate limits in (14–16) (see Appendix A for details). If ā= b̄= 1
6 then the free

boundary is a sphere, and in this case δ= 1
2 .

As noted above, we have chosen a coordinate system so that the principal axes of this
ellipsoid coincide with the coordinate directions. We emphasise that this is done for conve-
nience, and that we are unable to determine the orientation of this coordinate system within
this generic extinction analysis (this is to be contrasted with the limit β � 1, described in
Section 4, for which we relate the direction of the shrinking ellipsoid’s principal axes to the
initial geometry B).

3.3. Intermediate region, ρ=O(1)
In view of (9), for the intermediate region we write

W ∼ āξ2 + b̄η2 + ( 1
2 − ā− b̄)ζ 2 +A(T )W1(ρ, θ, φ)+ Ȧ(T )W2(ρ, θ, φ)+ Ä(T )W3(ρ, θ, φ)

(17)

as T → ∞, where (ρ, θ, φ) are spherical coordinates. Here the dots denote derivatives with
respect to T , and it is assumed that |Ä(T )|�|Ȧ(T )|�|A(T )| as T →∞ (we may verify these
assumptions a posteriori). The elliptic form of the first set of terms in (17) relates to estab-
lished results for Darcy flow (see [12] and references therein) and its validity will be con-
firmed by matching; the subsequent expansion is familiar in problems in which the solution is
almost, but not quite, of the self-similar form implied by the scaling properties of the partial
differential equation and its self-consistency is again confirmed in the usual way via the subse-
quent matching arguments. Such quasi-self-similar behaviour is very familiar in blow-up prob-
lems for semilinear heat equations (see for example the review [14]), with which the current
analysis has a number of aspects in common (including the key role played by polynomial
solutions to the heat equation). It follows from (13) that matching conditions of the form

Wi ∼ki1 1
ρ

+ki2 as ρ→0 (18)

must hold for i= 1,2,3. The function A(T ) and the constants ki1 are found as part of the
solution process, but to specify A(T ) uniquely we impose the conditions

k12 =1, ki2 =0, i≥2. (19)

It is noted the behaviour of the higher-order terms in (11) as ρ̂→∞ is consistent with (18).
Upon substituting (17) in (9) we find that the Wi satisfy the partial differential equations

∂2Wi

∂ρ2
+
(

2
ρ

− 1
2
ρ

)
∂Wi

∂ρ
+ 1
ρ2 sin θ

∂

∂θ

(
sin θ

∂Wi

∂θ

)
+ 1

ρ2 sin2 θ

∂2Wi

∂φ2
+Wi =Wi−1, (20)

for i=1,2,3, with W0 =0. By separating variables, it is shown in Appendix B that the condi-
tions (18) and (19) are consistent only with functions Wi (that do not grow exponentially as
ρ→∞) which are independent of θ and φ. We are thus left with ordinary differential equa-
tions, with solutions of the form

W1 =L(ρ), W2 = (1−γ )L(ρ)+N(ρ), W3 = k̄L(ρ)+ (1−γ )N(ρ)+M(ρ), (21)

where the functions L(ρ), N(ρ) and M(ρ) are also given in Appendix B (namely by (B.1–
B.2)), γ is Euler’s constant, and the constants ki1 are

k11 =0, k21 = 4
√
π

3
, k31 = 4

√
π

9
(5−6 log 2).
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The constant k̄ in (21) can be determined by analysing the next order term W4, but we shall
not need to do so here. Matching with (13) thus implies that

A∼−δσ 2 +O(σ 4), Ȧ+ 5−6 log 2
3

Ä+O(...A)∼ 1
4
√
π
σ 3 +O(σ 5), (22)

where δ is given by (14). Note that a different choice of the constant 1/3 in (13) would alter
the definition of σ(T ), and the second equation in (22) would reflect that change in having
a coefficient different from the 1/4

√
π . We solve the two equations (22) asymptotically, the

result being

A∼− 64πδ3

(T +Ts)2

[
1+ 2(−5+6 log 2) log[(T +Ts)/(8

√
πδ)]

T +Ts
+O

(
log(T +Ts)

(T +Ts)2

)]
, (23)

σ ∼ 8
√
πδ

T +Ts

[
1+ (−5+6 log 2) log[(T +Ts)/(8

√
πδ)]

T +Ts
+O

(
log(T +Ts)

(T +Ts)2

)]
(24)

as T → ∞, where Ts is a free constant (reflecting the invariance of (22) under translations
in T ) which depends on the evolution over earlier times. We keep Ts here because for large
Stefan number we find Ts �1 and the above results are then valid for T =O(Ts)�1; we note
that Ts corresponds to a shift in T and hence, via (8), to a rescaling in the spatial and tem-
poral variables. We also note that the correction terms in (11) contribute only O(σ 4) terms
in (22), and hence are negligible when matching with the intermediate region.

By using (21) and (B.3–B.4), the asymptotic behaviour

W1 =− 1
6ρ

2 +1, W2 ∼ 1
3ρ

2 logρ− 1
6 (1−γ )ρ2 −2 logρ+1−γ +O(ρ−4), (25)

W3 ∼− 1
3ρ

2 log2 ρ+ 1
3 (1−γ )ρ2 logρ− 1

6 k̄ρ
2 +2 log2 ρ−2(1−γ ) logρ+O(1) (26)

as ρ → ∞ is determined, and this is used to formulate matching conditions for the outer
region considered below. We introduce the variable R, defined by

R=− log r= 1
2T − logρ,

and note that R= 1
2T +O(1) in the intermediate region. Taylor expansions for A(T ) and its

derivatives can now be used (along with (17), (25), (26)) to give the matching condition

W ∼ āξ2 + b̄η2 + ( 1
2 − ā− b̄)ζ 2 − 1

6ρ
2[A(2R)+ (1−γ )Ȧ(2R)+ k̄Ä(2R)+· · · ]

+[A(2R)+ (1−γ )Ȧ(2R)+ k̄Ä(2R)+· · · ]+O(ρ−2) as ρ→∞, (27)

where here the ellipses denote terms of order
...
A(2R) as R→∞.

3.4. Outer region, r=O(1)
We denote w and u at t= tf by wf (x, y, z) and uf (x, y, z), respectively, and, recalling that u=
∂w/∂τ , write

w∼wf + τuf +O(τ 2) as τ→0

in the outer region, for which r =O(1). The final temperature distribution uf is determined
by evolution over earlier time-scales, while wf is given in terms of uf by the linear boundary-
value problem

∇2wf =−uf +β in B, wf = tf on ∂B,

since uf =−1 on ∂B.
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In order to match with the intermediate region we require that

wf ∼β[āx2 + b̄y2 + ( 1
2 − ā− b̄)z2]− 1

6βr
2[A(2R)+ (1−γ )Ȧ(2R)+· · · ] as r→0,

uf ∼β[A(2R)+ (1−γ )Ȧ(2R)+· · · ] as r→0

(see Equation (27)). It follows from (23) that for r � e−Ts/2 the behaviour of w and u at
extinction is given by

wf ∼β[āx2 + b̄y2 + ( 1
2 − ā− b̄)z2]+ 8πδ3βr2

3(− log r+Ts/2)2

×
[

1+ (−5+6 log 2) log[(− log r+Ts/2)/(4
√
πδ)]+γ −1

− log r+Ts/2

]
, (28)

uf ∼ −16πδ3β

(− log r+Ts/2)2

[
1+ (−5+6 log 2) log[(− log r+Ts/2)/(4

√
πδ)]+γ −1

− log r+Ts/2

]
(29)

(recalling that Ts�1 for β�1; for Ts�1 Equations (28–29) apply for − log r=O(Ts)with − log r+
Ts/2>0). An interesting point to note is that, while the free boundary becomes ellipsoidal in shape
as t→t−f , the final temperature distribution uf is radially symmetric for small r.

We remark the results (24), (28) and (29) obtained here are more precise than those
derived by Andreucci et al. [9], who only present results to leading order. That is, they do
not compute the terms of order log(T + Ts)/(T + Ts)

2 in (24), nor the second terms in the
square brackets in each of (28) and (29).

Finally, it is worth mentioning that, for the corresponding problem in two dimensions, the
time-dependence is slightly more complicated. In that case we have

σ(T )∼Eσ e−(T+Tc)
1/2/

√
2 as T →∞,

where Tc is a free constant (analogous to Ts in the three-dimensional case), and Eσ is a con-
stant which is found to depend on the initial geometry B. At extinction we have

uf ∼Eu β(− log r+ 1
2Tc)

1/2e−2(− log r+Tc/2)1/2 as r→0,

where again the constant Eu depends on the initial geometry. For details see [9] and [10].

3.5. Special case ā= b̄=1/6

For the special case in which the geometry B is a sphere, ā= b̄=1/6 and δ=1/2. In this case
the free boundary is also spherical, and is described by r = τ 1/2σ(T ). By substituting these
values of ā, b̄ and δ in (24) and (29) we find our results confirm those derived by Soward [8].

We mention that ā= b̄= 1/6 holds for other geometries B apart from spheres. In partic-
ular, these values arise for any geometry which has sufficient symmetry, the cube being the
most obvious example.

4. Large-Stefan-number asymptotics

4.1. Introduction

We have just presented an analysis describing the extinction behaviour of the Stefan problem
(4–6) for general Stefan number β. Within this analysis we are able to derive results for the
final temperature field, the shape of the shrinking solid-melt interface, and the rate at which
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the interface contracts, all up to the values of the free constants ā, b̄ and Ts (recall the con-
stant δ depends on ā and b̄ through (14)). In this section we consider the special case β�1.
This asymptotic limit is worthwhile because by considering early time-scales we are able to
determine the relationship between the constants ā, b̄ and Ts and the geometry B and the
Stefan number β (through (57) and (58) with δ given by (14)), and because it is of wide prac-
tical relevance (see the data in [6], for example). The analysis of this limit will lead us to rec-
ipes for both the extinction point (xf , yf , zf ) and the extinction time tf , results which cannot
be obtained for general β. We note that this section is an extension of the work presented
by Riley et al. [6], Stewartson and Waechter [7] and Soward [8] for spherical B to general
three-dimensional domains.

4.2. Time-scale 1, t=O(β)
4.2.1. Leading-order formulation
The first time-scale has t=O(β) and thus we scale time as t̂= t/β. It is appropriate to write

w∼βw0(x, y, z, t̂ ), ω∼βω̂0(x, y, z) as β→∞,

so that the leading-order problem is to solve

∂2w0

∂x2
+ ∂2w0

∂y2
+ ∂2w0

∂z2
=1, (30)

with

w0 = ∂w0

∂n
=0 on t̂= ω̂0(x, y, z), (31)

w0 = t̂ on ∂B. (32)

This formulation is typical for one-phase Stefan problems with β� 1. To leading order, the
problem has become quasi-steady, since the free boundary moves very slowly in this limit.
Equations (30–31) also describe flow of viscous fluid through porous media, with t̂= ω̂0 repre-
senting the free boundary between wet and dry regions (in two dimensions, the equations also
describe flow in Hele-Shaw cells). In that context, the free boundary t̂= ω̂0 encloses a bubble
or air, and Equations (30–32) lead to a non-trivial extinction problem in their own right. This
problem was analysed by McCue et al. [12], and so here we only present the relevant results.

We let the extinction time for the bubble problem (30–32) be t̂e, denote the point to which
the bubble contracts at t̂e by (xe, ye, ze) and set we(x, y, z)=w0(x, y, z, t̂e). Not surprisingly,
we cannot in general solve the nonlinear free-boundary problem (30–32) for all time t̂ . At the
extinction time t̂ = t̂e, however, it reduces to a linear boundary-value problem, since the free
boundary shrinks to a point. We set we =We(x, y, z)+ t̂e, so that We satisfies

∂2We

∂x2
+ ∂2We

∂y2
+ ∂2We

∂z2
=1 in B with We =0 on ∂B. (33)

The point (xe, ye, ze) is where We achieves a global minimum (for simplicity we assume there
to be only one such point) and the extinction time t̂e is found from t̂e =−We(xe, ye, ze). This
process is possible because time t̂ appears in (30–32) as a parameter only, thus we may solve
for w0 at any time t̂ without knowledge of the solution at previous times. Herein lies one of
the main advantages of the Baiocchi transform formulation.
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The linear boundary-value problem (33) provides a recipe for obtaining the extinction time
t̂e and extinction point (xe, ye, ze). From here on, without loss of generality, we suppose that
(xe, ye, ze) coincides with the origin, and that the function we has the behaviour

we(x, y, z)∼ax2 +by2 + ( 1
2 −a−b)z2 as (x, y, z)→ (0,0,0). (34)

(In general, the Cartesian coordinate system will have to be rotated for (34) to hold; we refer
the reader to [12] for a discussion on this point.) Here, a and b are important constants that
characterise the domain B. For definiteness, we assume a, b>0, a+b<1/2, (1−2a)/4≤b≤a,
so the coefficients of the x2, y2 and z2 terms in (34) are of equal or decreasing size. Again,
the solution of the linear problem (33) provides the values of a and b, and this can be done
numerically if necessary.

4.2.2. Main results
In the limit t̂→ t̂−e the analysis for the leading-order problem (30–32) breaks into two length
scales. In the outer region, valid for r=O(1), we have

w0 ∼we(x, y, z)− (t̂e − t̂ )+ 4π
3
T̄ (t̂e − t̂ )3G(x, y, z) as t̂→ t̂−e , (35)

where G is the Green function, which satisfies

−
(
∂2G

∂x2
+ ∂2G

∂y2
+ ∂2G

∂z2

)
= δ(x)δ(y)δ(z) in B with G=0 on ∂B, (36)

and has the local behaviour

G∼ 1
4π

(
1
r

−KB
)

as r→0 (37)

for some positive constant KB which depends on the geometry B and is determined as part
of the solution to the linear problem (36). The function T̄ (t̂e − t̂ ) in (35) is defined so that
the volume enclosed by the free boundary t̂= ω̂0 is 4πT̄ 3/3, and by matching with the inner
region (which has r=O(T̄ )), it is found that

t̂= t̂e −dT̄ 2 + 1
3KBT̄

3 +O(T̄ 5) as T̄ →0. (38)

Equivalently, we may write

T̄ = 1√
d
(t̂e − t̂ )1/2 + KB

6d2
(t̂e − t̂ )+O((t̂e − t̂ )3/2) as t̂→ t̂−e . (39)

The quantity d in (38) and (39) is a constant determined by considering the inner region. It
turns out we must solve the boundary-value problem (A.1–A.3), and so for the strict inequal-
ity (1 − 2a)/4<b<a, the constant d is given implicitly by the relations (A.5–A.6), where a
and b are defined by (34). We find the free boundary on this time scale approaches the ellip-
soid

x2

λ2
0 −p2

+ y2

λ2
0 −q2

+ z2

λ2
0

= T̄ 2

as t̂ → t̂−e . If (1 − 2a)/4<b and b= a, the free boundary approaches a prolate spheroid as
t̂→ t̂−e , with d given implicitly by (A.8–A.9), while if (1−2a)/4=b, b<a, the free boundary
approaches an oblate spheroid, with d given by (A.10–A.11). Finally, if a= b= 1/6, the free
boundary approaches a sphere as t̂→ t̂−e , with d=1/2.
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4.3. Time-scale 2, tf − t=O(1)
4.3.1. Introduction
At times just before extinction the solid-melt interface no longer moves slowly, and the equa-
tions governing the heat conduction are no longer quasi-steady. This new structure arises on
a time-scale in which τ = tf − t =O(1). From (39) we find the free boundary is a distance of
order β−1/2 away from the origin on this time-scale. There are two length scales to consider;
the first is near the free boundary r=O(β−1/2), while the other is for r=O(1).

It proves useful to expand the extinction time as

tf =βτa + τb+ τc

β1/2
+O(β−1), (40)

where the τj , j =a, b, c are as yet unknown constants which depend on the Stefan number β
and the geometry B. In addition, we define a function �(x, y, z)= tf −ω(x, y, z), so that an
alternative description for the free boundary t=ω(x, y, z) is τ =�(x, y, z).

4.3.2. Region I (inner), x, y, z=O(β−1/2)

For region I we use the scaled variables

x̄=β1/2x, ȳ=β1/2y, z̄=β1/2z, r̄=β1/2r,

and write

w∼ W̄ (x̄, ȳ, z̄, τ )+O(β−1/2), �∼�0(x̄, ȳ, z̄)+O(β−1/2) as β→∞.

The leading-order problem is then to solve the free-boundary problem

∂2W̄

∂x̄2
+ ∂2W̄

∂ȳ2
+ ∂2W̄

∂z̄2
=1 outside τ =�0(x̄, ȳ, z̄), (41)

W̄ = ∂W̄

∂n̄
=0 on τ =�0(x̄, ȳ, z̄), (42)

W̄ ∼ax̄2 +bȳ2 +
(

1
2 −a−b

)
z̄2 +f1(τ )+h1(τ )

1
r̄

as r̄→∞, (43)

where the function h1 is found as part of the solution process (it is given by (51) below) and
f1 is determined below by matching with the outer region.

4.3.3. Region II (outer), r=O(1)
For region II we require the form

w∼βwa(x, y, z)− τ +wb(x, y, z)+ 1
β1/2

W̃ (x, y, z, τ )+O(β−1) as β→0, (44)

so that immediately we find, by matching with region I, that f1(τ )= −τ . The functions wa
and wb satisfy identical boundary-value problems

∂2wj

∂x2
+ ∂2wj

∂y2
+ ∂2wj

∂z2
=1 in B, wj = τj on ∂B, (45)

wj = ∂wj

∂x
= ∂wj

∂y
= ∂wj

∂z
=0 at (x, y, z)= (0,0,0), (46)
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for j =a, b, while W̃ satisfies the initial-boundary-value problem

∂2W̃

∂x2
+ ∂2W̃

∂y2
+ ∂2W̃

∂z2
=−∂W̃

∂τ
in B \ (0,0,0) (47)

W̃ = τc, on ∂B, (48)

W̃ ∼h1(τ )
1
r

+f2(τ ) as r→0, (49)

W̃ ∼ 4π
3d
G(x, y, z)τ 3/2 +O(τ 1/2) as τ→+∞, (50)

where G(x, y) is the Green function defined by (36), h1 is determined by the solution of
(41)–(43), and the constant τc (defined in (40)) and the function f2 are to be found as part of
the solution process. The last condition (50) is found by matching back onto the first time-
scale (see (35) and (39)).

4.3.4. Analysis of (I )BVPs for W̄ , wj and W̃
BVP for W̄ : To solve the boundary-value problem (41–43) for W̄ we set

W̄ = (3h1(τ ))
2/3(X,Y,Z),

where

X= x̄

(3h1(τ ))
1/3
, Y = ȳ

(3h1(τ ))
1/3
, Z= z̄

(3h1(τ ))
1/3
,

so that  satisfies (A.1–A.2) with

∼aX2 +bY 2 + ( 1
2 −a−b)Z2 − τ

(3h1(τ ))
2/3

+ 1
3R

as R→∞,

where R2 =X2 + Y 2 +Z2 (recalling that f1 in (43) is found to be −τ by matching between
regions I and II). This is again the free-boundary problem considered in Appendix A, and
thus the function h1 must be

h1(τ )= τ 3/2

3d3/2
. (51)

Here d is the constant related to a and b by (A.5–A.6), as explained in Appendix A. The free
boundary τ =�0 is the ellipsoid

x̄2

λ2
0 −p2

+ ȳ2

λ2
0 −q2

+ z̄2

λ2
0

= τ

d
,

where, again, the constants λ0, p and q are related to a and b by (A.5–A.6).
BVPs for wa and wb: The boundary-value problems for wj , j = a, b are identical to the

problem for we, as described in Section 4.2.1. It follows that wa=wb=we and τa=τb= t̂e, so
that

wa(x, y, z)=wb(x, y, z)∼ax2 +by2 + ( 1
2 −a−b)z2 as (x, y, z)→ (0,0,0),

tf = (β+1)t̂e + 1
β1/2

τc +O(β−1),
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w= (β+1)we(x, y, z)− τ + 1
β1/2

W̃ (x, y, z, τ )+O(β−1), (52)

u=−1+ 1
β1/2

∂W̃

∂τ
+O(β−1), (53)

as β→∞. The (β+1)we term in (52) can be interpreted in the following way. The β corre-
sponds to the amount of latent heat released at the interface by freezing a unit volume, while
the 1 corresponds to the amount of sensible heat lost in reducing the temperature of the vol-
ume from u=0 initially to the boundary value u=−1. From (53) we see that for these pur-
poses the leading-order temperature at extinction is −1 everywhere within the solid.

IBVP for W̃ : In general, it is not possible to solve the linear initial-boundary-value prob-
lem for W̃ analytically for all time (domains B in which the Helmholtz equation is separable
provide exceptions), however we can determine some valuable information by considering the
governing equations (47–50) in limit τ → 0. In this limit, the initial-boundary-value problem
for W̃ has two length scales.

The inner region for the problem (47–50) is for r=O(τ 1/2), with τ�1. We write

W̃ = τw̃(ξ, η, ζ, T ),

where the independent variables are defined in (7–8), so that w̃ satisfies

∂2w̃

∂ξ2
+ ∂2w̃

∂η2
+ ∂2w̃

∂ζ 2
− 1

2

(
ξ
∂w̃

∂ξ
+η∂w̃

∂η
+ ζ ∂w̃

∂ζ

)
+ w̃= ∂w̃

∂T
.

We treat this partial differential equation in the limit T →∞ (τ→0) by writing

w̃∼ w̃1(ρ, θ, φ)T + w̃2(ρ, θ, φ),

where (ρ, θ, φ) are the appropriate polar coordinates. The result is that w̃1 and w̃2 satisfy the
equations

∂2w̃i

∂ρ2
+
(

2
ρ

− 1
2
ρ

)
∂w̃i

∂ρ
+ 1
ρ2 sin θ

∂

∂θ

(
sin θ

∂w̃i

∂θ

)
+ 1

ρ2 sin2 θ

∂2w̃i

∂φ2
+ w̃i = w̃i−1 (54)

for i= 1,2 with w̃0 = 0. For boundary conditions, we exclude exponential growth as ρ→∞,
and combine (49) and (51) to give

w̃1 ∼O(1), w̃2 ∼ 1
3d3/2

1
ρ

+O(1) as ρ→0.

Partial differential equations identical to (54) with boundary conditions of this form are dis-
cussed in detail in Appendix B. Using (almost) identical arguments, we deduce the solutions

w̃1 = 1
4
√
πd3/2

L(ρ),

w̃2 =a0,0L(ρ)+ρ2
2∑

m=0

(am,2 cosmφ+bm,2 sinmφ)Pm2 (cos θ)+ 1
4
√
πd3/2

N(ρ),

where the relevant functions are defined in Appendix B, and a0,0, am,2 and bm,2 are constants
which cannot be determined without the explicit behaviour of W̃ to O(r2) as r→0, which can
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only be found with knowledge of W̃ for all time τ . We note that as ρ→∞,

w̃2 = 1
12

√
πd3/2

ρ2 logρ− 1
6
a0,0ρ

2 +ρ2
2∑

m=0

(am,2 cosmφ+bm,2 sinmφ)Pm2 (cos θ)

− 1
2
√
πd3/2

logρ+O(1).

This information is used below when matching with the outer region.
The outer region for the problem (47–50) is for r=O(1). Here it is appropriate to write

W̃ =wc(x, y, z)+ τuc(x, y, z)+O(τ 2)

for τ�1, where (in the absence of a solution to (47–50) for all time) wc and uc are unknown
functions. By matching with the inner region we find as r→0 that

wc ∼ 1
12

√
πd3/2

r2 log r− 1
6
a0,0r

2 + r2
2∑

m=0

(am,2 cosmφ+bm,2 sinmφ)Pm2 (cos θ),

uc ∼ − 1
2
√
πd3/2

log r.

Note that with this analysis we are unable to determine the contribution τc to the extinction
time tf , since τc is in effect determined by the condition wc = τc on ∂B, and here we only derive
the behaviour of wc as r→ 0. To determine the value of τc (as well as the function f2(τ )), we
must solve the entire linear initial-boundary-value problem (47–50) for all time. As mentioned
above, this more complicated task is only possible analytically for certain domains B.

4.3.5. Summary
To summarise, at extinction we have

uf ∼−1+ 1
β1/2

[
− 1

2
√
πd3/2

log r+· · ·
]
, (55)

wf ∼ (β+1)[ax2 +by2 + ( 1
2 −a−b)z2]

+ 1
β1/2

[
r2 log r

12
√
πd3/2

− 1
6
a0,0r

2 + r2
2∑

m=0

(am,2 cosmφ+bm,2 sinmφ)Pm2 (cos θ)

]
, (56)

with r=O(β−1/2) and β→∞, where the ellipsis denotes terms of order one as r→0. Given
that uf (0,0,0)=0, the apparent singularity in (55) occurs because the limits r→0 and β→∞
do not commute, and as such we need to consider a further time-scale.

We make the point that on the second time-scale we have had to treat an initial-
boundary-value problem in the outer region, which is in contrast to the first time-scale, where
the governing equations are quasi-steady (see [12]). The inner problems for each time-scale,
however, have the same time-dependence, so that to leading order the evolution of the free
boundary is the same. In the third (and final) time-scale this time-dependence does change,
and the analysis for this behaviour is described below.

4.4. Time-scale 3, τ =O(e−Ts)

The third (and final) time-scale is for τ =O(e−Ts), where the constant Ts introduced in Sec-
tion 3.3 is determined below by matching back onto the second time-scale. The analysis for
this time-scale is presented in Section 3, which we recall is valid for all Stefan numbers. For
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β�1, in order to make a match between the leading-order terms in (28) with those in (56),
it is immediately clear that ā=a+O(β−1), b̄=b+O(β−1) and Ts =O(β1/2). By considering
further terms it follows that for β�1 we require

Ts =8
√
πδ3/2β1/2 + 1

2 (−5+6 log 2) logβ+O(1), (57)

ā=a+ 1
β
(a− 1

6 )+O(β−3/2), b̄=b+ 1
β
(b− 1

6 )+O(β−3/2), (58)

where δ is computed by (14) with ā and b̄ given by (58).
We can now rewrite (28) and (29) in a way which is valid for all r�1, namely

wf ∼ (β+1)[ax2 +by2 + ( 1
2 −a−b)z2]− 1

6 r
2

+ r2

6ψ(R)2

[
1+ (−5+6 log 2) logψ(R)+O(1)

4
√
πδ3/2β1/2ψ(R)

]
, (59)

uf ∼− 1
ψ(R)2

[
1+ (−5+6 log 2) logψ(R)+O(1)

4
√
πδ3/2β1/2ψ(R)

]
as β→∞, (60)

where the function ψ is defined by

ψ(R)=1+ R

4
√
πδ3/2β1/2

,

remembering that R= − log r. So for 1 �R� β1/2, Equations (59) and (60) reduce to (55)
and (56), while for R�β1/2 we have (28) and (29) with (57) and (58). In the latter case we
have, to leading order,

uf ∼−16πδ3β

R
,

so that uf (0,0,0)= 0, as required. The volume enclosed by the solid-melt interface is given
asymptotically for T �1 by

4π
3
σ 3τ 3/2 ∼ 4πτ 3/2

3δ3/2β3/2ψ( 1
2T )

3

[
1+ 3(−5+6 log 2) logψ( 1

2T )+O(1)
8
√
πδ3/2β1/2ψ( 1

2T )

]
as β→∞,

which is valid for all T =− log τ�1.
For β� 1 the third time-scale is evidently exponentially short (− log τ =O(β1/2)), and it

thus does not contribute (significantly) to the extinction time expansion (40). However, the
analysis is important because it removes the nonuniformity in the final temperature distribu-
tion on the second time-scale.

5. Discussion

We have studied the problem of freezing a general three-dimensional region of liquid, with
emphasis on determining the behaviour of the temperature field and the solid-melt interface at
times leading up to complete freezing. To simplify the analysis we have assumed a one-phase
problem, with the liquid phase held at the fusion temperature.

There is a generic extinction analysis, initially presented by Andreucci et al. [9] and also
given here, which shows that, regardless of both the Stefan number β and the initial geome-
try B, the solid-melt interface becomes ellipsoidal in shape as extinction is approached. The
universality of this result is noteworthy, especially for the cases in which β is not large. Other
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results from this analysis include the time-dependence of the shrinking liquid region (24) and
the behaviour of the temperature field near the extinction point at the extinction time (29).
There is certain information about the freezing process which we are unable to obtain by
considering the generic extinction analysis alone. This includes the location of the extinction
point within the intial geometry and the time it takes for complete freezing. In addition, there
are quantities in (24) and (29) that depend on the evolution of the temperature field over ear-
lier times, namely the free constants ā, b̄ (δ depends on ā and b̄) and Ts.

It happens that for large Stefan number β� 1 there are three distinct time-scales for the
solidification problem, with the generic extinction analysis coinciding with the final (exponen-
tially-short) time-scale. In this special case, we are able to determine the unknown quantities
mentioned in the previous paragraph by matching back from this final time-scale onto the
previous one. This analysis forms the main contribution of the study.

In presenting the analysis for β� 1 we have called upon many of the results of McCue
et al. [12], where the analogous problem of shrinking bubbles in porous media is considered.
These results are relevant for the first time-scale, where the problem becomes quasi-steady to
leading order. Some specific examples of how the aspect ratios of the shrinking bubble (or in
our case, the shrinking region of liquid) depend on the inital geometry are presented in [12].

As was the case in [12], we have assumed here that the initial geometry B is such
that there is only one extinction point. For non-convex boundaries ∂B, there may be mul-
tiple extinction points, and in this case the function we introduced in Section 4.2.1 can
have more than one local minimum (with each minimum corresponding to an extinction
point). We do not consider necessary conditions for multiple extinction points here, but
note that multiple minima of we are likely to be accompanied by a break-up of the liq-
uid region, and ultimately the behaviour of the temperature field and the solid-melt inter-
face in the neighbourhood of each extinction point should be qualitatively the same as
that described above. While we believe the extinction behaviour we have described to be
generic (non-generic (exceptional) extinction structures are also to be expected, for exam-
ple in describing the borderline case for non-convex domains that separate a regime in
which extinction occurs at two points from one in which it occurs at a single point), it
is only neutrally stable in the sense that perturbing the initial data (such as the bound-
ary shape ∂B) will also perturb the aspect ratios of the evolving free boundary just before
extinction.

Finally, we note that it is possible to extend the Stefan problem (1–3) to include other
physical effects, such as surface tension and kinetic undercooling, although particular care
must be taken when deriving the correct equations in the one-phase limit (see [15] for details).
A generic extinction analysis has been given by Herraiz et al. [16] for the case in which the
problem is radially symmetric and surface-tension effects are included; however, the formula-
tion differs slightly from that of Evans and King [15]. Herraiz et al. [16] show that the inclu-
sion of surface tension leads to completely different scalings to the case in which these effects
are ignored (the latter case covered by Herrero and Velázquez [13], Soward [8], and discussed
in Section 3.5).
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Appendix A. The inner free-boundary problem

Here we present the solution to the free-boundary problem

∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2
=1 outside �0 (A.1)

with

= ∂

∂N
=0 on ∂�0, (A.2)

∼aX2 +bY 2 + ( 1
2 −a−b)Z2 −d+ 1

3R
+O(R−3) as R→∞, (A.3)

where R2 =X2 +Y 2 +Z2 and ∂/∂N is used to denote the rescaled normal derivative. The loca-
tion of the free boundary, as well as the constant d and the O(R−3) terms in (A.3), are found
as part of the solution process, and depend on the special constants a and b. The details of
the solution process are described in [12], and we present only the most important aspects of
the solution here.

For a+b<1/2, (1−2a)/4<b<a, we use ellipsoidal coordinates (λ,µ, ν), defined by

X=
[
(λ2 −p2)(p2 −µ2)(p2 −ν2)

p2(p2 −q2)

] 1
2

, Y =
[
(λ2 −q2)(µ2 −q2)(q2 −ν2)

(p2 −q2)q2

] 1
2

, Z= λµν

pq
,

where p and q are constants which take values so that 0<ν<q<µ<p<λ<∞. Surfaces of
constant λ are ellipsoids. We denote the free boundary �0 by λ=λ0, so it is given by

X2

λ2
0 −p2

+ Y 2

λ2
0 −q2

+ Z2

λ2
0

=1. (A.4)

The solution for  is of the form

=g1(λ)+g2(λ)µ
2ν2 +g3(λ)(µ

2 +ν2);
the functions gi , for i=1,2,3 are derived by McCue et al. [12]. For our purposes, it is suffi-
cient to know the solutions for the constants p, q, λ0 and d in terms of a and b. These are
given implicitly by the relations

a= λ2
0 −q2

2(p2 −q2)
− E(ϕ0, q/p)

2p(p2 −q2)
, b=− λ2

0 −p2

2(p2 −q2)
− F(ϕ0, q/p)

2pq2
+ pE(ϕ0, q/p)

2q2(p2 −q2)
, (A.5)

λ0

√
(λ2

0 −p2)(λ2
0 −q2)=1, d=F(ϕ0, q/p)/2p, (A.6)

where ϕ0 =arcsin(p/λ0), and F(ϕ, k) and E(ϕ, k) are, respectively, elliptic integrals of the first
and second kind, defined by

F(ϕ, k)=
∫ sinϕ

0

dt√
(1− t2)(1−k2t2)

and E(ϕ, k)=
∫ sinϕ

0

√
1−k2t2

1− t2 dt. (A.7)

For the case in which b= a, we have q =p and the free boundary is a prolate spheroid
with 1

6 <a<
1
4 . By taking the limit q→p in (A.5–A.6) we find

a=b= λ3
0

4(λ3
0 −1)

− λ
3/2
0

8(λ3
0 −1)3/2

log

[
λ

3/2
0 + (λ3

0 −1)1/2

λ
3/2
0 − (λ3

0 −1)1/2

]
, (A.8)
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p=q= (λ3
0 −1)1/2

λ
1/2
0

, d= λ
1/2
0

4(λ3
0 −1)1/2

log

[
λ

3/2
0 + (λ3

0 −1)1/2

λ
3/2
0 − (λ3

0 −1)1/2

]
. (A.9)

Here, the free boundary is given by λ0(X
2 + Y 2)+Z2/λ2

0 = 1. Another limiting case is b=
1
4 (1−2a), which implies q=0 and corresponds to the free boundary being the oblate spheroid
λ4

0X
2 + (Y 2 +Z2)/λ2

0 =1. In this instance we find

a= 1
2 −2b= λ6

0

2(λ6
0 −1)

− λ6
0

2(λ6
0 −1)3/2

arctan(λ6
0 −1)1/2, (A.10)

p= (λ6
0 −1)1/2

λ2
0

, d= λ2
0

2(λ6
0 −1)1/2

arctan(λ6
0 −1)1/2, (A.11)

with 1
6 <a <

1
4 . Finally, for the special case a = b= 1

6 , the free boundary is just the sphere
X2 +Y 2 +Z2 =1, and the value of d is d= 1

2 .

Appendix B. Analysis of the partial differential equation (20)

In what follows we use the three functions

L(ρ)=1− 1
6ρ

2,N(ρ)=−2 logρ+ 1
3ρ

2 logρ+2ρ2
∫ ∞

ρ

I (t)

t3
dt, (B.1)

M(ρ)=2 log2 ρ− 1
3ρ

2 log2 ρ−4ρ2
∫ ∞

ρ

I (t) log t
t3

dt

+2ρ2
∫ ∞

ρ

J (t)

t3
dt+4ρ2

∫ ∞

ρ

1
t

∫ ∞

t

I (s)

s3
ds dt, (B.2)

where the integrals I (ρ) and J (ρ) are defined by

I (ρ)=2
√
π

∫ ∞

ρ

et
2/4

t2
erfc( 1

2 t)dt=
∫ ∞

0

√
t+1−1
t

e−ρ
2t/4 dt,

J (ρ)=−4
∫ ∞

0

1
t

[√
1+ t log

√
1+ t− 1

2 (
√

1+ t+1) log( 1
2 (

√
1+ t+1))

]
e−ρ2t/4 dt,

and erfc(z) is the complementary error function, defined by

erfc(z)= 2√
π

∫ ∞

z

e−t2 dt.

The integrals I (ρ) and J (ρ) are almost identical to ones arising in Soward [8]. We shall also
require the asymptotic behaviours

N(ρ)= 4
√
π

3
1
ρ

−1+γ +√
πρ+O(ρ2 logρ) as ρ→0,

M(ρ)= 4
√
π

9
(−6 log 2+3γ +2)

1
ρ

+O(1) as ρ→0,

N(ρ)= 1
3ρ

2 logρ−2 logρ+ 1
2ρ4

+O(ρ−6) as ρ→∞, (B.3)

M(ρ)=− 1
3ρ

2 log2 ρ+2 log2 ρ−2(logρ+1)
1
ρ2

+O(ρ−4) as ρ→∞, (B.4)
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where γ is Euler’s constant γ = 0·5772 . . . . The technique used to evaluate the behaviour of
I (ρ) and J (ρ) as ρ → 0 involves dividing the range of integration into two parts, and is
described in Soward [8].

With the use of the method of separation of variables, we find that the appropriate line-
arly independent homogeneous solutions WiH to (20) with right-hand side replaced by zero
are (as usual) of the form

Rn(ρ)(A
(i)
m,n cosmφ+B(i)m,n sinmφ)Pmn (cos θ),

where here m and n are non-negative integers, Pmn (z) is the associated Legendre function of
the first kind [17, p. 332], A(i)m,n and B(i)m,n are arbitrary constants (chosen to satisfy boundary
conditions as ρ→0), and Rn(ρ) satisfies

d2Rn

dρ2
+
(

2
ρ

− 1
2
ρ

)
dRn
dρ

+
(

1− n(n+1)
ρ2

)
Rn=0.

Linearly independent solutions to this ordinary differential equation which do not grow expo-
nentially are

Rn= 8
√

2
ρ3/2

eρ
2/8W 7

4 ,
1
4 + 1

2n
( 1

4ρ
2),

where Wκ,µ(z) is Whittaker’s function [17, p. 505]. For the particular values n= 0 and n= 2,
these solutions reduce to

R0 =ρ2 −6, R2 =ρ2.

Otherwise, these solutions behave like

Rn∼ 2n+3�(n+ 1
2 )

�( 1
2n−1)

1
ρn+1

as ρ→0 (n=1, n≥3), (B.5)

where �(z) denotes the usual Gamma function [17, p. 255].
Now consider the partial differential equation (20) with i = 1. This equation is homoge-

neous, with (given the required periodicity in θ and φ) general solution

W1 =
∞∑
n=0

∞∑
m=0

Rn(ρ)(A
(1)
m,n cosmφ+B(1)m,n sinmφ)Pmn (cos θ).

The condition (18) as ρ→0 implies that

A(1)m,n=B(1)m,n=0 for n=1, n≥3,

since the algebraic singularities given by (B.5) as ρ→0 are not allowed. We are left with

W1 =A(1)0,0(ρ
2 −6)+ρ2

2∑
m=0

(A
(1)
m,2 cosmφ+B(1)

m,2 sinmφ)Pm2 (cos θ)

=A(1)0,0(ρ
2 −6)+ρ2[ 1

4A
(1)
0,2(3 cos 2θ +1)

− 3
2 (A

(1)
1,2 cosφ+B(1)1,2 sinφ) sin 2θ + 3

2 (A
(1)
2,2 cos 2φ+B(1)2,2 sin 2φ)(1− cos 2θ)],

where the constants are yet to be determined.
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To solve (20) with i=2 we first write W2 =W2H +W2P , where W2P is a particular solution,
which we choose to be

W2P =−6A(1)0,0N(ρ)+
(

30
ρ2

+10−2ρ2 logρ+120
√
πρ2

∫ ∞

ρ

et/4

t6
erfc( 1

2 t)dt

)

×
2∑

m=0

(A
(1)
m,2 cosmφ+B(1)

m,2 sinmφ)Pm2 (cos θ),

where N(ρ) is given by (B.1). This function has the behaviour

W2P =A(1)0,0

(
−8

√
π

1
ρ

+6(1−γ )+O(ρ)
)

+
(

24
√
π

1
ρ3

+10
√
π

1
ρ

+O(ρ)
) 2∑
m=0

(A
(1)
m,2 cosmφ+B(1)

m,2 sinmφ)Pm2 (cos θ)

as ρ→ 0. We find that no choice of the constants A(2)m,n and B
(2)
m,n in the homogeneous part

W2H can eliminate the singularity of order ρ−3 (forbidden by (18)) in W2P , and as such, we
must set A(1)

m,2 = B
(1)
m,2 = 0, m= 0,1,2. Furthermore, (18) implies we must also have A(2)m,n =

B
(2)
m,n=0 for n=1, n≥3, so we are left with

W1 =A(1)0,0(ρ
2 −6),

W2 =A(2)0,0(ρ
2 −6)−6A(1)0,0N(ρ)+ρ2

2∑
m=0

(A
(2)
m,2 cosmφ+B(2)

m,2 sinmφ)Pm2 (cos θ).

It is clear that a similar argument for Wi+1 will eliminate the constants A(i)m,n and B(i)m,n for
m,n≥ 1 and i≥ 1, and that the solutions to (20) which satisfy the boundary conditions (18)
as ρ→0 must be radially symmetric. The constants A(i)0,0 are determined by (19).
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